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Abstract
A geometrical description of the Lagrangian dynamics in quasi-coordinates on
the tangent bundle, using the Lie algebroid framework, is given. Linear non-
holonomic systems on Lie algebroids are solved in local coordinates adapted to
the constraints, through Lagrangian multipliers and Gibbs–Appell generalized
methods.
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Mathematics Subject Classification: 17B45, 70G10, 70H03, 70S05

1. Introduction

It is well known that the use of quasi-coordinates has many applications in physics and
engineering (see e.g. [23]). As far as we know there is no systematic treatment of the concept
of quasi-coordinates from the geometric point of view. The aim of this paper is to develop
the geometric approach to such a concept in the Lie algebroid framework and to prove the
efficiency of this geometric tool for solving different problems.

The dynamics of a classical system is usually described in terms of (local) generalized
coordinates on a manifold Q, the configuration space of the system, which give rise to a
particular type of coordinates on its tangent bundle T Q, i.e. positions qi and their velocities
vi ≡ q̇i . However, there are some cases where it is useful to consider a different set of
coordinates on T Q. For example, Euler equations for the rigid body are written in terms of
the three Euler angles (θ, ψ, ϕ) and the three components of the angular velocity (ωθ , ωψ, ωϕ)

instead of the velocities (θ̇ , ψ̇, ϕ̇). These new kind of coordinates are called quasi-velocities.
Although the calculations in quasi-coordinates are difficult, they are often used to solve many
types of mechanical systems (see [14, 23, 29]). The geometrical use of quasi-coordinates
amounts ‘to forget’ the tangent structure of the tangent bundle and to use only the vector
bundle structure and the Lie algebra structure on the set of vector fields, that is to say, not
using the usual tangent bundle coordinates associated with a coordinate system on the base
manifold. This geometrical framework leads naturally to the use of Lie algebroids and to the
development of the Lagrangian mechanics on Lie algebroids.

1751-8113/07/3310031+18$30.00 © 2007 IOP Publishing Ltd Printed in the UK 10031
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Lie algebroids provide a very general framework for Mechanics, including mechanical
systems with symmetries. Roughly speaking, a Lie algebroid is a generalization of both a Lie
algebra and a tangent bundle structure, both being the simplest examples of Lie algebroids.
Moreover, the Lie algebroid structure is well adapted to variational calculus for constrained
systems and may appear in the reduction process.

Lie algebroids were introduced by Pradines [24] as infinitesimal objects corresponding
to Lie groupoids. In the last years several authors have studied the theory of Lie algebroids
giving important contributions for the knowledge of their properties and applications. Among
others, Higgins et al [13] introduced the notion of prolongation of a Lie algebroid over a map;
Weinstein [28] was the first to study Lagrangian mechanics on Lie algebroids and Martı́nez
[19] developed the formalism for the Lagrangian mechanics on Lie algebroids, generalizing
the fundamental geometrical elements of Lagrangian mechanics (see also [16] and references
therein). Unfortunately, this structure of Lie algebroid is not well known for most physicists
and however it may play a very relevant role in many physical problems, for instance in BRST
formalism, Yang–Mills and topological field theory [15, 22, 27].

One of the aims of this paper is to prove the efficiency of Lie algebroid structures to
deal with systems with linear non-holonomic constraints, providing us with a generalized
version of the Lagrangian multipliers [1, 2, 25] and Gibbs–Appell [11, 17] methods. The
solutions of these systems are obtained in local coordinates adapted to the constraints. These
adapted coordinates on a Lie algebroid play the role of quasi-coordinates on a tangent bundle.
For the non-holonomic systems in a Lie algebroid we refer the first paper to the subject by
Cortés et al [6] and the papers of Mestdag et al [20, 21], Cortés et al [7] and Cariñena et al
[5].

This paper is organized in the following way. The geometric approach to solve classical
systems using quasi-coordinates is developed in section 2. A brief introduction to Lie
algebroids is given in section 3, and the geometric approach to quasi-coordinates is analysed
from the Lie algebroid structure point of view in section 4. For the self-containedness of the
paper, general changes of coordinates on a Lie algebroid are studied in section 5. In the last
section we apply the above formalism to solve systems with linear non-holonomic constraints
in Lie algebroids, using Lagrange multipliers and Gibbs–Appell methods in the Lie algebroid
framework. At this point, the advantage of using adapted coordinates is clear.

2. A geometric approach to quasi-coordinates

The use of quasi-coordinates has been shown to be very efficient in describing the motion of
some dynamical systems. For instance, the area swept by the line joining a planet with the
sun for the motion of the planet, or the components of the angular momentum for describing
the motion of a rigid body with a fixed point are quasi-coordinates. As pointed out in [11, 29],
the configuration of a dynamical system cannot be in general described by quasi-coordinates,
but it is possible to describe the displacement by using quasi-coordinates, more specifically
quasi-velocities. Next, we explain the geometric meaning of such quasi-velocities.

Let πQ : T ∗Q → Q denote the cotangent bundle of an n-dimensional differentiable
manifold Q. It is well known that a local 1-form γ on an open set U of Q, i.e. a section for
πQ over U , defines a linear function γ̂ ∈ C∞(U), where U = τ−1

Q (U) for τQ : T Q → Q, as
follows:

γ̂ (v) = 〈γτQ(v), v
〉
, v ∈ U,

for a vector v in a point of the open set U.
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The choice of a local chart on an open set U of Q, with coordinates (q1, . . . , qn), determines
a basis (∂/∂q1, . . . , ∂/∂qn) of the tangent space at each point of U = τ−1

Q (U) and defines an
associated local coordinate system on T Q. The 2n coordinates are now the n basic functions
qi (or in a more rigourous notation qi ◦ τQ) and the corresponding functions on the fibres
vi = d̂qi . Note that dq1 ∧ · · · ∧ dqn �= 0, and therefore the functions d̂qi , for i = 1, . . . , n,
are functionally independent. When the local expression of γ in terms of local coordinates on
U is γ = γi(q) dqi , then γ̂ is the function γ̂ (v) = γi(τQ(v))vi .

Instead of using {dq1, . . . , dqn} to define a chart on U , we can alternatively make use,
together with the base coordinate functions, of any other set of n 1-forms {α1, . . . , αn}, given
locally by

αi = αi
j (q) dqj , ∀ i = 1, . . . , n,

with the only condition of being linearly independent at each point, i.e. α1 ∧ · · · ∧ αn �= 0. In
this case the 2n coordinates on U are the n basic functions qi together with the linear functions
{α̂1, . . . , α̂n}. These new coordinates on the fibres {α̂1, . . . , α̂n} are but linear combinations,
with basic functions as coefficients, of the usual velocities. Note that the 1-forms αi do not
need to be exact, but in the case of all of them being exact, the functions α̂i would be the
velocities corresponding to a new coordinate system on the base manifold Q. The new fibre
coordinates wi = α̂i , which play the role of velocities, are called quasi-velocities, while
the coordinates (qi, wi) are called quasi-coordinates on T Q. Note that in some cases, for
instance when Q is a Lie group G, we can globally define quasi-velocities on Q while velocities
can only be defined locally.

The fact that α1 ∧ · · · ∧ αn �= 0 points out that there exist functions βi
j (q) such that

dqi = βi
j (q)αj , ∀ i = 1, . . . , n,

with det
(
βi

j

) �= 0. The matrix with entries βi
j (q) will be the inverse matrix of

(
αi

j (q)
)
, i.e.

βi
j (q)α

j

k (q) = δik,

for all q ∈ U . The quasi-velocities wi are associated with a basis of vector fields {X1, . . . , Xn}
on Q, dual to the basis of 1-forms {α1, . . . , αn}, i.e. 〈αi,Xj 〉 = δij . Then locally, in quasi-
coordinates,

Xj = βi
j

∂

∂qi
. (1)

The partial derivative ∂/∂qi in (1) is given, in the usual coordinates, by

∂

∂qi
= ∂

∂qi

∣∣∣∣
v const

+
∂βk

l

∂qi
αl

rv
r ∂

∂vk
. (2)

The relations among fibre coordinates are

wi = αi
j v

j , vi = βi
jw

j ,

consequently,

∂wi

∂vj
= αi

j ,
∂vi

∂wj
= βi

j

and

∂

∂vi
= α

j

i

∂

∂wj
,

∂

∂wi
= β

j

i

∂

∂vj
.
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The local expressions of the Liouville vector field � and the vertical endomorphism S
(see [8–10]) in terms of quasi-coordinates are, respectively, given by

� = vi ∂

∂vi
= βi

jw
jαk

i

∂

∂wk
= wj ∂

∂wj

and

S = ∂

∂vi
⊗ dqi = α

j

i

∂

∂wj
⊗ dqi = ∂

∂wj
⊗ αj .

The explicit coordinate expression of a second-order differential equation (SODE) vector
field D ∈ X(T Q) in terms of quasi-coordinates is

D = βi
k(q)wk ∂

∂qi
+ f i(q,w)

∂

∂wi
.

In fact, if

D = hi(q,w)
∂

∂qi
+ f i(q,w)

∂

∂wi
,

then

S(D) = α
j

i h
i(q,w)

∂

∂wj
,

and therefore (by the definition of a SODE vector field) S(D) = � if and only if
α

j

i h
i(q,w) = wj , or equivalently, hi = βi

jw
j .

Let us consider a regular Lagrangian system characterized by a function L ∈ C∞(T Q)

and non-conservative force 1-form Q locally defined by Q(q, v) = Qi(q, v) dqi . The energy
of the system in the absence of non-conservative forces is given by

EL = �L − L = wi ∂L
∂wi

− L.

The Cartan 1-form θL = dL ◦ S is given in quasi-coordinates by

θL =
(

∂L
∂qk

dqk +
∂L
∂wi

dwi

)
◦
(

α
j

i

∂

∂wj
⊗ dqi

)
= α

j

i

∂L
∂wj

dqi = ∂L
∂wj

αj ,

and consequently, the Cartan 2-form ωL defined by ωL = −dθL, turns out to be

ωL = 1

2

[(
∂αk

i

∂qj
− ∂αk

j

∂qi

)
∂L
∂wk

+ αk
i

∂2L
∂qj ∂wk

− αk
j

∂2L
∂qi∂wk

]
dqi ∧ dqj

+ αk
i

∂2L
∂wj∂wk

dqi ∧ dwj,

that is,

ωL = 1

2

[
γ k

ml

∂L
∂wk

+ β
j

l

∂2L
∂qj ∂wm

− βi
m

∂2L
∂qi∂wl

]
αm ∧ αl +

∂2L
∂wj∂wk

αk ∧ dwj,

where the functions γ k
ml are given by

γ k
ml = βj

mβi
l

(
∂αk

j

∂qi
− ∂αk

i

∂qj

)
.

These functions are known in the literature as Hamel symbols (see [14, 23]).
Assuming that the Lagrangian L is regular, we can write the coordinate expression of the

dynamical equation i(X)ωL = dEL − Q in terms of quasi-coordinates. The dynamics will be
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given by a SODE vector field of the form X = βi
mwm∂/∂qi + f m(q,w)∂/∂wm (see [9]). The

left-hand side of the dynamical equation becomes

i(X)ωL =
(

γ k
ml

∂L
∂wk

+ β
j

l

∂2L
∂qj ∂wm

− βi
m

∂2L
∂qi∂wl

)
wmαl

+ wm ∂2L
∂wj∂wm

dwj − f m ∂2L
∂wm∂wl

αl,

while the right-hand side is

dEL − Q =
(

wkβi
l

∂2L
∂qi∂wk

− βi
l

∂L
∂qi

)
αl + wk ∂2L

∂wjwk
dwj − ϒlα

l,

where ϒl = βi
l Qi is the l-component in quasi-coordinates of the external force Q. Therefore,

wmγ k
ml

∂L
∂wk

− wmβi
m

∂2L
∂qi∂wl

− f m ∂2L
∂wm∂wl

= −βi
l

∂L
∂qi

− ϒl.

The dynamical equation is equivalent to £XθL = dL + ϒ , where £X is the Lie derivative in the
direction of X. In traditional physics notation, the above equation is equivalent to the following
system of generalized Euler–Lagrange equations:

d

dt

(
∂L
∂wl

)
= β

j

l

∂L
∂qj

+ wmγ k
ml

∂L
∂wk

+ ϒl. (3)

When the Lagrangian L is of mechanical type (i.e. L = T − V , with T the kinetic energy and
V the potential energy), the equations of motion are

d

dt

(
∂T

∂wl

)
= β

j

l

∂T

∂qj
+ wmγ k

ml

∂T

∂wk
+ �l, (4)

where �l = β
j

l Fj is the l-component in quasi-coordinates of the external force F = −dV +Q
(see [11, 29]).

3. Lie algebroids

As was already mentioned in the introduction the tangent bundle to a manifold can be viewed
as a particular example of a more general structure, that of a Lie algebroid. This structure has
been shown to be of a great usefulness in mechanics since the pioneer paper by Weinstein [28].
In particular, Martı́nez showed in [19] that the Lagrangian theory can be developed directly
in the Lie algebroid formalism by using new geometric tools which generalize the vertical
endomorphism and the Liouville vector field.

As this structure is of a recent use in physics and we think that it is not well known for
most physicists, we summarize in this section the basic concepts and definitions of the theory
of Lie algebroids.

Definition 3.1. A Lie algebroid with base Q is a vector bundle τA : A → Q, together with a
Lie algebra structure in the space of its sections given by a Lie product [·, ·]A, and a vector
bundle map over the identity in the base, called the anchor, ρ : A → T Q, inducing a map
between the corresponding spaces of sections, to be denoted by the same name and symbol,
such that

[v, ϕw]A = ϕ[v,w]A + (ρ(v)ϕ)w,

for any pair (v,w) of sections for τA and each ϕ ∈ C∞(Q).
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As a consequence of the definition, the morphism between sections induced by ρ, ρ :
�(A) → X(Q), is a Lie algebra homomorphism.

Let {qi |i = 1, . . . , n} be local coordinates in a chart on an open set U ⊂ Q, and let
{eα|α = 1, . . . , s} be a basis of local sections of the bundle UA = τ−1

A (U) → Q. Each local
section v is written as v = vαeα . The local coordinates of a point p ∈ UA such that p = v(q)

are p = (qi, vα(τA(p))). In a similar way, the corresponding dual basis {eα|α = 1, . . . , s} of
local sections on UA∗ = π−1

A (U) allows us to define local coordinates (qi, µα) for the dual
bundle πA∗ : A∗ → Q.

If the local expressions for the Lie product and the anchor map are

[eα, eβ ]A = c
γ

αβeγ , ρ(eα) = ρi
α

∂

∂qi
, (5)

where α, β, γ = 1, . . . , s, and i = 1, . . . , n, the functions c
γ

αβ ∈ C∞(U) and ρi
α ∈ C∞(U) are

called structure functions of the Lie algebroid. These are not arbitrary functions, they should
satisfy the conditions for ρ to be a Lie algebra homomorphism, which are

ρj
α

∂ρi
β

∂qj
− ρ

j

β

∂ρi
α

∂qj
= ρi

γ c
γ

αβ, ∀ i = 1, . . . , n, (6)

and those for the Leibniz condition and the Jacobi identity of the bracket [·, ·]A:∑
cycl(α,β,γ )

(
cν
αβcµ

νγ + ρi
γ

∂c
µ
βα

∂qi

)
= 0, ∀ µ = 1, . . . , s. (7)

Equations (5) and (6) are called structure equations of the Lie algebroid.
Examples of Lie algebroids are the tangent bundle of a manifold Q, with the identity as an

anchor map and the usual bracket of vector fields, or any integrable sub-bundle of it, and also
a finite-dimensional Lie algebra g, considered as a vector bundle over one point, for which the
anchor vanishes identically and the bracket is that of g. In the first case, with the usual choice of
coordinates (qi, vi) on A = T Q, induced from local coordinates (qi) on the base Q, the
structure functions are ck

ij = 0 and ρi
j = δij . However, in arbitrary coordinates, the structure

functions ck
ij of the Lie algebroid τQ : T Q → Q do not vanish. For the case of the Lie algebra

g, the structure functions c
γ

αβ are the structure constants of the Lie algebra and ρi
α = 0.

Given a Lie algebroid (A, ρ, [·, ·]A) over Q, there exists a graded derivation dA of degree
1 of the graded exterior algebra of forms of A,�•(A), to be called A-forms, which is nilpotent
of order 2, i.e. d2

A = 0. It is called the exterior differential of the Lie algebroid. In the
particular cases of the tangent bundle T Q and that of a Lie algebra g, dA reduces to the de
Rham operator d on the manifold Q and the Chevalley–Eilenberg differential dg, respectively.

4. Quasi-coordinates and the tangent bundle as a Lie algebroid

The choice of quasi-coordinates (qi, wi) on the tangent bundle T Q determines a local basis
of sections for τT Q : T (T Q) → T Q, i.e. a local basis of vector fields on T Q. This basis
is {Xj, ∂/∂wj |j = 1, . . . , n}, with Xj = βi

j ∂/∂qi being an element of the dual basis of
{αi |i = 1, . . . , n}; {qi |i = 1, . . . , n} is the set of local coordinates on Q.

The structure functions of the Lie algebroid τT Q : T (T Q) → T Q with respect to such a
local basis are given by

[Xr,Xl] = γ m
rl Xm,

[
Xm,

∂

∂wk

]
= 0,

[
∂

∂wi
,

∂

∂wj

]
= 0,

ρ(Xm) = Xm, ρ

(
∂

∂wj

)
= ∂

∂wj
.
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These relations give a geometric meaning to Hamel symbols introduced when dealing with
quasi-coordinates on a tangent bundle. The Hamel symbols are not arbitrary, they must satisfy
the structure equations (6) and (7).

Using the machinery of Lie algebroid theory, in particular the exterior differential, which
in this case reduces to de Rham exterior differential on T Q, one can recover all the expressions
obtained in a change from usual to quasi-coordinates [4]. This is the case, for instance, of
the expressions in quasi-coordinates given in section 2: if the Lagrangian is regular and
a non-conservative force Q is given, the dynamics equation i(X)ωL = dEL − Q has a
unique solution X = wmXm + f m∂/∂wm that satisfies the generalized Euler–Lagrangian
equations (3).

Example 4.1. Let us consider a particle P (mass = 1) moving in a plane under the action of
a force of magnitude F(r) on the direction of a fixed point O, where r represents the distance
between the point O and the particle P. Let θ be the angle that the line OP makes with a fixed
direction in the plane, and Ȧ the area swept by unity of time by the line. The configuration
space of the system is Q = R

2 − {(0, 0)} and the usual polar coordinates on R
2 − {(x, 0)}

extend to the velocity phase space T Q as q1 = r, q2 = θ, ṙ, θ̇ . In order to solve the equations
of motion we use the following set of quasi-velocities on T Q:w1 = ṙ , w2 = 2Ȧ = r2θ̇ . The
matrices α and β are as follows:

α = (αi
j

) =
(

1 0
0 r2

)
, β = (βi

j

) =
(

1 0
0 1

r2

)
.

The motion of the particle P is described by the regular Lagrangian

L = 1

2
(w1)2 +

1

2

(w2)2

r2
− V (r),

where F1 = −dV /dr = F(r) and F2 = 0. The equations of motion (4) are equivalent to
�1(r, θ, w1, w2) = ẇ1 − (w2)2

r3

�2(r, θ, w1, w2) = ẇ2

r2
.

Since �1 = β1
1F1 + β2

1F2 = F1 and �2 = β1
2F1 + β2

2F2 = 0, the dynamics is given by the
integral curves of the vector field X = wmXm + f i∂/∂wi satisfyingẇ1 = F(r) +

(w2)2

r3
= f 1

ẇ2 = 0 = f 2,

where ṙ = w1 and θ̇ = w2/r2. As we can easily see, the quasi-velocity w2 is a constant of
motion, i.e. the area swept Ȧ is a constant of motion.

The usual coordinates on T Q are q1 = r, q2 = θ, v1 = ṙ and v2 = θ̇ . If we need to
determine the geometrical solution of the dynamics in the usual set of coordinates on T Q, we
must pay attention to the fact that the term with ∂/∂qi in the solution X in quasi-coordinates
is given by (2). We have

X = wmXm +

(
F(q1) +

(w2)2

(q1)3

)
∂

∂w1
= wmβi

m

∂

∂qi
+

(
F(q1) +

(w2)2

(q1)3

)
∂

∂w1
.

So, applying (2), the solution of the dynamics in the usual coordinates (q1, q2, v1, v2) on T Q

is

X = vi ∂

∂qi

∣∣∣∣
v const

+ vi ∂β
j

k

∂qi
αk

r v
r ∂

∂vj
+

(
F(q1) +

(w2)2

(q1)3

)
βi

1
∂

∂vi
,
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or equivalently,

X = vi ∂

∂qi

∣∣∣∣
v const

+ v1 ∂

∂v2

(−2

r3

)
r2v2 +

(
F(q1) +

(w2)2

(q1)3

)
∂

∂v1
.

Then, in the coordinates (r, θ, ṙ, θ̇ ) we have

X = ṙ
∂

∂r
+ θ̇

∂

∂θ
+ (F (r) + rθ̇2)

∂

∂ṙ
− 2ṙ θ̇

r

∂

∂θ̇
.

Example 4.2. Let G be a Lie group and denote the neutral element of the group by e. We can
identify the tangent bundle T G with G × TeG, using the map T Lg−1 : T G → G × TeG given
by

T Lg−1(g, ġ) = (g, ξ),

where Lg : G → G is the left-translation defined by Lgh = gh, for all h ∈ G. If
(ξ I ), I = 1, . . . , dim G, is the set of coordinates of ξ ∈ TeG with respect to a basis {eI }
of TeG, then we can define a set of quasi-velocities (ξ I ) on T G by

ξ I eI = ξ = TgLg−1(ġ).

If g is a point in G with local coordinates (gI ), then (gI , ξ I ) defines a set of quasi-coordinates
in T G. Note that the map α = TgLg−1 : TgG → TeG is an invertible linear transformation
whose inverse transformation is given by β = TeLg : TeG → TgG. Thus, ξ I = αI

J ġJ

and ġI = βI
J ξJ , where α = (αI

J

)
and β = (βI

J

)
are the coordinate transformation matrices

between the usual coordinates (gI , ġI ) on T G and the quasi-coordinates (gI , ξ I ).
A (regular) G-invariant Lagrangian L ∈ C∞(T G) is given in quasi-coordinates by a

function l in TeG as follows: L(g, ġ) = l(ξ). As the Lagrangian L on the Lie algebroid T G is
G-invariant, it is then possible to obtain the Euler–Lagrange equations of the gauge algebroid
T G/G ≡ g from the equations (3) in T G:

d

dt

(
∂l

∂ξ I

)
= ξJ cK

JI

∂l

∂ξK
, (8)

where cK
JI are the structure constants of the Lie algebra g of the Lie group G with respect to

the basis {eI } of g ≡ TeG. In fact, let XL(g) = TeLg(X) be the left-invariant vector field in
G associated with an element X in the Lie algebra g of G. Thus, the set {eL

I } represents a local
basis of sections of T G associated with the set of local coordinates (gI , ξ I ) on T G ≡ G × g,
because

ξ I eL
I = ġi ∂

∂gi
.

The structure functions of the Lie algebroid T G are given by[
eL
I , eL

J

]
T G

= cK
IJ eL

K, ρT G

(
eL
J

) = eL
J .

Using the structure functions of the Lie algebroid T G and the Euler–Lagrangian
equations (3), in the absence of non-conservative forces, we obtain (8). Then, the geometric
solution of the dynamics is a SODE vector field on T G given by XL = ξMeL

M + f M∂/∂ξM ,
with

f M = W
MI

ξJ cK
JI

∂l

∂ξK
,

where W
MI

is the inverse matrix of (∂2l/∂ξ I ∂ξM).
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5. Changes of local coordinates on a Lie algebroid with fixed base coordinates

As in the geometric approach to Lagrangian formulation of classical mechanics, it is possible
to write the dynamics on a Lie algebroid using different sets of coordinates [16, 19], as happens
with the quasi-coordinates formalism on a tangent bundle [11, 14]. But in an arbitrary Lie
algebroid we do not have a canonical basis of sections. Therefore, there is no natural set of
coordinates for a Lie algebroid. Sometimes, however, it is worthwhile writing the equations
of motion in a given set instead of another initially given, as we shall see in the following
section.

Recall that the prolongation of the Lie algebroid p : A → Q (see [13, 16, 19]) is a
vector bundle T A over A, where T A is the total space of the pullback of the vector bundle
Tp : T A → T Q by the anchor map ρ : A → T Q. The projection pT A : T A → A is defined
by pT A(b, v) = pT A(v) = a ∈ A, with pT A : T A → A being the canonical projection
of the tangent bundle T A over the base A. An element (b, v) of T A will be denoted by
(a, b, v), where v ∈ TaA. With this notation, T A = {(a, b, v) ∈ A × A × T A|p(a) =
p(b), ρ(b) = Tap(v), with v ∈ TaA}. The vector bundle pT A : T A → A can be endowed
with a Lie algebroid structure, where the anchor is the map ρT A : T A → T A, given by
ρT A(a, b, v) = v, and the Lie bracket on the space of sections is defined by setting [16, 19]:

[V1, V2]T A(a) = (a, [σ1, σ2]A(p(a)), [X1, X2](a)),

for all a ∈ A and all projectable sections V1, V2 ∈ �(T A), i.e. sections of the formVi(a) =
(a, σi(p(a)),Xi(a)), where σi ∈ �(A) and Xi ∈ X(A) are such that Tp ◦ Xi = ρ(σi) ◦ p,
with i = 1, 2. If A is the tangent bundle to a manifold Q,A = T Q, endowed with its usual
Lie algebroid structure, the prolongation of the Lie algebroid A is the tangent bundle T (T Q)

to T Q endowed with its usual structure of Lie algebroid over T Q [19].
Let us consider on the Lie algebroid A a new set of local coordinates {(qi, wα)|i =

1, . . . , n, α = 1, . . . , s} (see section 3) associated with a basis of sections {fα|α = 1, . . . , s}
of A, that satisfies

wα = �̂α(q, v) = �αβ(q)vβ, vα = �̂α(q, w) = �αβ(q)wβ, (9)

for all α = 1, . . . , s, where �̂α and �̂α are linear functions on A associated with the A-1-forms
�α and �α , respectively, such that �αβ�βγ = δαγ . Associated with the new coordinates on
the Lie algebroid A, we consider on the prolongation of A the following basis of local sections:

X ′
α(a) = (a, fα(p(a)),Xα(a)), V ′

α(a) =
(

a, 0,
∂

∂wα

∣∣∣∣
a

)
, (10)

where Xα = �βαρi
β∂/∂qi , for all α = 1, . . . , r . Thus, the structure functions of the Lie

algebroid T A are given by

[X ′
α,X ′

β]T A = γ ε
αβX ′

ε, [X ′
α,V ′

β]T A = 0, [V ′
α,V ′

β]T A = 0,

ρT A(X ′
α) = Xα, ρT A(V ′

α) = ∂

∂wα
,

where [fα, fβ ]A = γ ε
αβfε .

Let L ∈ C∞(A) be the Lagrangian of a dynamical system on the Lie algebroid A, subject
to the action of a non-conservative force Q. If the Lagrangian is regular, the dynamics has a
unique solution X = aαX ′

α + bαV ′
α that satisfies the system (see [4])

aα = wα

bα = W
αβ
[

wζ γ ε
ζβ

∂L
∂wε

− wζXζ

(
∂L
∂wβ

)
+ Xβ(L) + ϒβ

]
,
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where W
αβ

represent the entries of the inverse matrix of
(
∂2L/∂wβ∂wα

)
and ϒβ = �αβQα

is the β-component of the non-conservative force Q = QαX α , in the new coordinates. The
solution of the dynamics is a SODE section of T A because S(X) = �, and the dynamical
equation is equivalent to

£ρT A
(X)θL = dT AL + Q,

where £ρT A
(X) := i(X) ◦ dT A + dT A ◦ i(X). The generalized Euler–Lagrange equations in the

new coordinates are given by

d

dt

(
∂L
∂wα

)
= �βαρi

β

∂L
∂qi

+ wεγ β
εα

∂L
∂wβ

+ ϒα, (11)

where q̇i = wα�βαρi
β . The above equations are the Lagrange equations given by Weinstein

[28] in the new set of coordinates (qi, wα) that corresponds to the local basis {fα|α = 1, . . . , s}
of sections of A.

Example 5.1. Let P(M,G) be a principal bundle and (qi, gI , q̇i , ξ I ) be a set of quasi-
coordinates on T P , where (qi) are local coordinates on M, (qi, q̇i) are the usual local
coordinates on the tangent bundle T M and (gI , ξ I ) is a set of quasi-coordinates on T G,
as given in example 4.2.

Let L ∈ C∞(T P ) be a regular G-invariant Lagrangian. It is given in terms of quasi-
coordinates by Lqc(q, g, q̇, ξ) = L(q, g, q̇, ġ) = l(q, q̇, ξ), and we can write the equations of
motion on the gauge algebroid T P/G from equations (11), in the absence of non-conservative
forces, as follows (see [14]):

d

dt

(
∂l

∂ξ I

)
= ξJ γ K

JI

∂l

∂ξK
,

d

dt

(
∂l

∂q̇i

)
= ∂l

∂qi
, (12)

where γ K
JI = cK

JI are the structure constants of the Lie algebra g of the Lie group G, with respect
to a basis {eI } of g ≡ TeG. Indeed, let � : T P → T P/G be the canonical projection over
the principal bundle π : P → M = P/G. The gauge algebroid structure (ρT P/G, [·, ·]T P/G)

is given by (see for example [3]):

(1) ρT P/G(X̂) = T π ◦ ρT P (X),

(2) [X̂, Ŷ ]T P/G = � ◦ [X, Y ]T P ,

for all X, Y ∈ �(T P ), �-related with X̂, Ŷ ∈ �(T P/G), respectively. Let us consider a
connection on the principal bundle π : P → M and denote by A the associated connection
1-form; in local coordinates, A(∂/∂qi |q) = AI

i (q)eI . Let {ei, eI } be a basis of local sections
of T P/G, obtained from the �-projection of the basis

{
(∂/∂qi)h, eL

I

}
of local sections of

T P , where (∂/∂qi)h = ∂/∂qi −AI
i e

L
I denotes the horizontal lift to P of the vector field ∂/∂qi

on M and eL
I is the left-invariant vector field on G corresponding to the element eI of the basis

of g. In these local coordinates, the gauge algebroid structure is given by

[ei, ej ]T P/G = −CK
ij eK [ei, eI ]T P/G = cK

IJ AJ
i eK, [eI , eJ ]T P/G = cK

IJ eK,

ρT P/G(ei) = ∂

∂qi
, ρT P/G(eJ ) = 0,

where CK
ij are the coefficients of the curvature form of the chosen principal connection.

The local basis of sections
{
∂/∂qi, eL

I

}
of T P is the one associated with the set of local

coordinates (qi, gI , q̇i , ξ I ) initially given. The �-projections, � ◦ ∂/∂qi = fi ◦ π and
� ◦ eL

I = fI ◦ π , define a local basis of sections {fi, fI } of T P/G associated with the local
coordinates (qi, q̇i , ξ I ) on T P/G. Note that fi = ei + AI

i eI and fI = eI . According to
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the definition of the gauge algebroid structure, we have [fi, fj ]T P/G = [fi, fI ]T P/G = 0 and
[fI , fJ ]T P/G = cK

IJ fK . So, using the reduced Lagrangian l ∈ C∞(T P/G), we obtain the
equations of motion (12) from the generalized Euler–Lagrange equations (11). The reduced
dynamics X̂l = aαX ′

α + bαV ′
α satisfies the following system

aα = wα

bα = W
αβ
[
ξJ γ K

Jβ

∂l

∂ξK
− q̇i ∂2l

∂qi∂wβ
+ δβi

∂l

∂qi

]
,

where wi = q̇i , wI = ξ I ,W
αβ

are the entries of the inverse matrix of (∂2L/∂wβ∂wα) and
{X ′

α,V ′
α} is the basis of local sections of T (T P/G) defined in (10).

6. Lagrangian systems with non-holonomic linear constraints

In this section we will study systems with linear non-holonomic constraints on a Lie algebroid
A, i.e. constraints which are linear in the local coordinates vα on A associated with a local
basis of sections {eα} of A, by choosing local coordinates that are adapted to the constraints.

Consider a system with k linear non-holonomic constraints on a Lie algebroid
(A, ρ, [·, ·]A) over Q,

φa(q, v) = �̂a(q, v) = �aβ(q)vβ,

given by a sub-bundle τ : B → Q of A, where �a denotes an A-1-form and �̂a is the associated
linear function. The submanifold B is defined by the set {φa = 0|a = 1, . . . , k} and is called
the constrained manifold. Suppose that the A-1-forms �a are such that �1 ∧ · · · ∧ �k �= 0.
Then, the functions φa are functionally independent.

Let T B be the vector bundle over B, whose total space

T B = {(b, c, v) ∈ B × B × T B|τ(b) = τ(c), �(c) = T τ(v) with v ∈ TbB}
is given by the pullback of the vector bundle T τ : T B → T Q by the map � = ρ◦ι : B → T Q,
where ι : B → A is the canonical inclusion. The projection pT B : T B → B of T B onto B, is
given by pT B(b, c, v) = b. Suppose that L ∈ C∞(A) is a regular Lagrangian describing the
non-holonomic system under the action of a non-conservative force Q. Alike the formalism
of linear non-holonomic systems in a tangent bundle, the equations of motion of the non-
holonomic system in A can be written according to d’Alembert–Chetaev principle [18, 26], in
the global form{

(i(X)ωL − dT AEL + Q) |B ∈ �(B̃0)

X|B ∈ �(T B),
(13)

where B0 = 〈�a|a = 1, . . . , k〉 is the annihilator of B and B̃0 = 〈p∗
2�a|a = 1, . . . , k〉

can be viewed as a vector bundle over B, where p2 : T A → A is the projection defined
by p2(a, b, v) = b, for all (a, b, v) ∈ T A. Note that for each q ∈ Q,B0

q is the set
generated by the elements �a(q) satisfying 〈�a(q), v〉 = 0, for each element v ∈ Bq and
a = 1, . . . , k. Moreover, dim(T AB)0 = k, (T AB)0 is generated by the 1-forms dT Aφa and
S∗((T AB)0) = B̃0.

6.1. Lagrange multipliers method in a Lie algebroid framework

The non-holonomic system previously given can be studied using the method of Lagrangian
multipliers (see [2] for the classical case). The dynamics equation of the system is given by

i(X)ωL = dT AEL − Q − λap
∗
2�a, (14)
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where the Lagrange multipliers λa ∈ C∞(A) are determined by the tangency condition
£ρT A

(X)φa = 0, for all a = 1, . . . , k. Recall that p2 : T A → A is defined by p2(a, b, v) = b

and the semi-basic sections p∗
2�a = �aβχβ are the reaction forces of the Lie algebroid A (see

[5]). The solution of equation (14) is a section of the form

X = XQ
L + λaZa,

where XQ
L is the solution of the free dynamics (without constraints) and Za is the vertical

section of T A such that

i(Za)ωL = −p∗
2�a.

Note, once again, that X is a SODE section of T A, since S(X) = S
(
XQ

L
) = �.

It is important to observe that for computing the Lagrangian multipliers λa , we must
suppose the following compatibility condition [7]: the matrix of entries Cab = ρT A(Za)φb

is regular in each point of B, where B = {wα = 0|α = s − k + 1, . . . , s} is the constrained
manifold. In this case, we say that the non-holonomic system (L, B) on the Lie algebroid A

is regular, what is assumed hereafter. We can also assume without losing generality that the
last k columns of the matrix (�aβ) are independent.

Under the above assumptions, consider a set of coordinates (q1, . . . , qn, w1, . . . , ws)

adapted to the constraints on the bundle A:

wα = vα, ∀ α = 1, . . . , (s − k),

ws−k+a = φa, ∀ a = 1, . . . , k.

The transformation matrices are

�̃ =
(

Is−k 0(s−k)×k

C21 C22

)
and �̃ =

(
Is−k 0(s−k)×k

D21 D22

)
,

where C = (C21C22) is given by Cab = �ab, for all a = 1, . . . , k and b = 1, . . . , s, C22

is invertible by hypothesis and the matrix D = (D21D22) is given by D21 = −C−1
22 C21 and

D22 = C−1
22 . These matrices satisfy �̃�̃ = Is = �̃�̃.

The geometrical dynamics solution is given in the new coordinates by

X|B = wαX ′
α + f α(q, w)V ′

α,

where α = 1, . . . , s − k. The functions f α are determined by

f α(q, w) = gα(q, w) + λaWαβ�aβ,

with β = 1, . . . , s and a = 1, . . . , k, where

XQ
L = wβX ′

β + gβ(q, w)V ′
β, Za = Wαβ�aβV ′

α,

and the function λa is given by

dT Awn−k+b
(
XQ

L
)

+ λadT Awn−k+b(Za) = 0, ∀ b = 1, . . . , k.

Therefore, the dynamics is given by the integral curves of the following vector field in B:

ρT A(X|B) = wαXα + f α ∂

∂wα
,

and satisfies

£ρT A
(X)θL = dT AL + Q + λap

∗
2�a

because X is a SODE section of T A. In the new coordinates, the previous equation is given by

d

dt

(
∂L
∂wα

)
= �̃βαρi

β

∂L
∂qi

+ wεγ β
εα

∂L
∂wβ

+ ϒα + λa�̃βα�aβ,
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where q̇i = wα�̃βαρi
β and ϒα = �̃βαQβ is the α-component of the non-conservative force

Q on the new coordinates, with α, ε = 1, . . . , s − k; α, β = 1, . . . , s; a = 1, . . . , k and
i = 1, . . . , n. Thus, we have

q̇i = wα�̃βαρi
β

d

dt

(
∂L
∂wα

)
= �̃βαρi

β

∂L
∂qi

+ wεγ β
εα

∂L
∂wβ

+ ϒα

d

dt

(
∂L
∂wᾱ

)
= �̃βᾱρi

β

∂L
∂qi

+ wεγ
β
εᾱ

∂L
∂wβ

+ ϒᾱ + λᾱ−s+k,

with ᾱ = s − k + 1, . . . , s. In this system, after the elimination of the Lagrange multipliers
we obtain, in the new coordinates, the generalized Lagrange–d’Alembert equation

d

dt

(
∂L
∂wα

)
= �̃βαρi

β

∂L
∂qi

+ wεγ β
εα

∂L
∂wβ

+ ϒα,

where q̇i = wα�̃βαρi
β .

When selecting a different set of coordinates adapted to the constraints, similar results
would be obtained: wI = �̃Iβvβ and ws−k+a = φa = �aβvβ , for all I = 1, . . . , s − k and
a = 1, . . . , k. The only condition that has to be assumed is the invertibility of the matrix

�̃ =
(

C

D

)
,

where CIβ = �̃Iβ and Daβ = �aβ , for I = 1, . . . , s − k; a = 1, . . . , k and β = 1, . . . , s.

Example 6.1. Consider the motion of a free particle of unity mass in the configuration space
M = R

3, with a linear constraint

φ = ż − yẋ.

In order to determine the solution of this problem, we consider the set of local coordinates
(x, y, z, w1, w2, w3), on the Lie algebroid A = T R

3 given by

w1 = vx = ẋ, w2 = vy = ẏ, w3 = φ = vz − yvx,

whose coordinates transformation matrices �̃ and �̃ are

�̃ =
 1 0 0

0 1 0
−y 0 1

 , �̃ =
1 0 0

0 1 0
y 0 1

 .

The motion of the free particle is characterized by the regular Lagrangian

L = 1
2 ((w1)2 + (w2)2 + (w3 + yw1)2).

Let B be the constraint manifold. When solving the problem through the method of Lagrangian
multipliers, we obtain the solution

X|B = w1X ′
1 + w2X ′

2 − w1w2

y2 + 1
yV ′

1,

where

XL = w1X ′
1 + w2X ′

2 + w3X ′
3 − w1w2V ′

3,

Z = −yV ′
1 + (y2 + 1)V ′

3,

λ = w1w2

y2 + 1
.
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In this particular case, we can identify T A = T (T R
3) with T (T R

3) = T A. In a similar way,
we can identify the solution X|B with a vector field on B,

X|B ≡ w1 ∂

∂x
+ w2 ∂

∂y
+ yw1 ∂

∂z
− w1w2

y2 + 1
y

∂

∂w1
,

and the dynamics is then given by the integral curves of this vector field.

6.2. Gibbs–Appell’s method in a Lie algebroid framework

In the Lie algebroid formalism, the aim of Gibbs–Appell’s method is to determine the equations
of motion of a system with constraints [11, 12]. This method consists, in a first step, on
determining Gibbs–Appell’s function associated with the Lagrangian of the system without
constraints, and then to express this function in terms of a set of coordinates adapted to the
constraints. In a final step, we need to determine the equations of motion given by Gibbs–
Appell’s method in the new coordinates.

Next we will determine Gibbs–Appell’s function associated with a Lagrangian L ∈
C∞(A), defined on a Lie algebroid (A, ρ, [·, ·]A) over Q. We will show that this function is
defined on a subset A(2) of T A, given by the set of equivalent classes of admissible curves
in the bundle p : A → Q, i.e. curves in A, σ ′ : I → A, such that σ̇ (t) = ρ(σ ′(t)), where
σ : I → Q is a curve in Q given by σ = p ◦ σ ′. Two curves in A, σA ≡ (σ, σ ′) and
γA ≡ (γ, γ ′) are said to be equivalent if

σ(0) = γ (0)

σ ′(0) = γ ′(0)

σ̇ ′(0) = γ̇ ′(0).

Equivalently, A(2) can be defined as A(2) =⋃a∈A A(2)
a , with

A(2)
a = {v ∈ TaA|Tap(v) = ρ(a)}.

The set A(2) is an affine sub-bundle of pT A : T A → A, modelled over the fibre bundle
Ker(Tp), whose projection on A is given by

p2,1 : (q, v, a) ∈ A(2) → (q, v) ∈ A.

Moreover, the inclusion of A(2) in T A is defined by

i : (qi, vα, aα) ∈ A(2) → (
qi, vα, vαρi

α, aα
) ∈ T A.

So, given an element v ∈ A(2)
a of the form v = (qi, vα, aα), we have i(v) = vαρi

α∂/∂qi +
aα∂/∂vα .

Let L ∈ C∞(A) be a regular Lagrangian of a system without constraints and Q a non-
conservative force. To define Gibbs–Appell’s function associated with the Lagrangian L, we
need to consider the section �L of T A along the map p2,1 : A(2) → A,

�L = XL ◦ p2,1 − T(1),

where XL is the solution of the equation i(XL)ωL = dT AEL, given in local coordinates by
XL(q, v) = vαXα + Fα(q, v)Vα , and T(1) is a section of T A along the map p2,1 : A(2) → A

defined by v(1) = ρT A ◦ T(1), where v(1) is a vector field on A along the map p2,1 : A(2) → A

given by

v(1) ◦ σ 2 = T σ 1(d/dt),
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for all admissible curves σ 1 ≡ (σ, σ ′) : I → A, where σ 2 := (σ, σ ′, σ̇ ′) : I → A(2).

In local coordinates, the curve σ 1 is given by (σ i, vα) and, since it is admissible, we have
σ̇ i = vαρi

α . Thus,

v(1)(qi, vα, v̇α) = vαρi
α(q)∂qi + v̇α ∂

∂vα
.

The section T(1) of T A along the map p2,1 : A(2) → A is given, in local coordinates, by

T(1)(qi, vα, v̇α) = vαXα(qi, vα) + v̇αVα(qi, vα).

Therefore, the section �L takes values in the vertical sub-bundle of T A, i.e. p2 ◦�L = s0 ◦p2,1,
where s0 is the null section of A; in local coordinates,

�L(qi, vα, v̇α) = (F α(qi, vα) − v̇α)Vα.

Consider a symmetric tensor GA : T A ×A T A → R on A, given in local coordinates by

GA(q, v) = G1
αβ(q, v)Vα ⊗ Vβ + G2

αβ(q, v)Vα ⊗ X β + G3
αβ(q, v)X α ⊗ X β,

such that S∗GA = p∗
2G, where G is the fundamental tensor associated with the Lagrangian

function L ∈ C∞(A). G is given, in local coordinates, by G(q, v) = Gαβ(q)eα ⊗ eβ , with
Gαβ = ∂2L/∂vα∂vβ . Note that the fundamental tensor G : A → S2A∗ associated with the
Lagrangian L is a bundle map over Q, from the Lie algebroid p : A → Q to the bundle
pS2A∗ : S2A∗ =⋃q∈Q S2

qA
∗ → Q, where

S2
qA

∗ = {Gq : Aq × Aq → R|Gq is bilinear and symmetric}.
Consequently, G1

αβ(a) = Gαβ(p(a)), for all a ∈ A. Gibbs–Appell’s function associated with
the Lagrangian L is a function on A(2) [17], defined by

GL = 1
2 G̃(�L, �L),

where G̃ = GA ◦ p2,1.
Consider a dynamical system on the Lie algebroid A with k linear non-holonomic

constraints φa(q, v) = �̂a(q, v) = �aβ(q)vβ , and let (q1, . . . , qn, w1, . . . , ws) be a set
of coordinates on A adapted to the constraints

wα = �̃αβvβ,

where the last k coordinates coincide with the constraints φa , i.e.

wI = �̃Iβvβ, ∀ I = 1, . . . , (s − k),

ws−k+a = φa, ∀ a = 1, . . . , k.

The transformation matrix �̃ is invertible, so vα = �̃αβwβ , where �̃γα�̃αβ = δγβ . The
Gibbs–Appell function GL, defined on a curve (qi, vα, v̇α) in A(2), is given by

GL(q, v, v̇) = 1
2Gαβ(q)v̇α v̇β − Gαβ(q)v̇αF β(q, v) + 1

2Gαβ(q)F α(q, v)F β(q, v).

In the case where both the constraints ws−k+a = φa and their time derivatives
are equal to zero, the function GL is easily written in the new coordinates
(q1, . . . , qn, w1, . . . , ws−k, ẇ1, . . . , ẇs−k). Note that the time derivative of a function
f ∈ C∞(A) is a function in C∞(A(2)), given by

dT(1)f = i(T(1))dT Af = v(1)f,

where T(1) is the section of T A over the map p2,1 : A(2) → A defined above.
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In order to determine the equations of motion of the non-holonomic system depending on
a non-conservative force Q, we need to solve the system given by the Gibbs–Appell (s − k)

equations

∂GL(q, w, ẇ)

∂ẇI
= ϒI , (15)

where ϒI = �̃βIQβ is the I-component of the non-conservative force, in the new coordinates,
with I = 1, . . . , s − k. If B is the constrained manifold, the solution of the non-holonomic
system is the following section of T B:

X = wIX ′
I + ẇIV ′

I ,

where {X ′
α,V ′

α} is given by (10), that is,

X(a) =
(

a, wI fI (q), wIXI (a) + ẇI
∂

∂wI

∣∣∣∣
a

)
,

for all a ∈ Aq , where XI = �̃βI ρ
i
β

∂
∂qi . Therefore, the dynamics is given by the integral curves

of the vector field on B,

ρT A(X) = wIXI + ẇI
∂

∂wI
.

Example 6.2. Let A = T R
2 × R

3 → R
2 be a vector bundle, with local coordinates

(x, y, ẋ, ẏ, ωx, ωy, ωz) and {e1 = (∂x, 0), e2 = (∂y, 0), e3 = (0, X3), e4 = (0, X4), e5 =
(0, X5)} the associated local basis of sections of A. The vector bundle A can be endowed with
a Lie algebroid structure (ρ, [·, ·]A), locally given by

[e3, e4]A = −e5, [e3, e5]A = e4, [e4, e5]A = −e3,

ρ(e1) = ∂

∂x
, ρ(e2) = ∂

∂y

and with the remaining structure functions being zero. Let us suppose that a non-holonomic
system on the Lie algebroid A is characterized by the regular Lagrangian

L = 1

2
(ẋ2 + ẏ2) +

k2

2

(
ω2

x + ω2
y + ω2

z

)
,

and the constraints given by

φ1 = ẋ − rωy, φ2 = ẏ + rωx,

where k, r are constants (see [7]). The solution of the system without constraints is a section
of T A that is written in local coordinates as

XL = ẋX1 + ẏX2 + ωxX3 + ωyX4 + ωzX5,

where X1(a) = (a, e1(q), ∂
∂x

∣∣
a

)
,X2(a) = (a, e2(q), ∂

∂y

∣∣
a

)
and Xi (a) = (a, ei(q), 0), for all

a ∈ Aq and i = 3, 4, 5. Thus, Gibbs–Appell’s function associated with L is given by

GL = 1

2
[(v̇1)2 + (v̇2)2] +

k2

2
[(v̇3)2 + (v̇4)2 + (v̇5)2].

Let us consider the following coordinates:

w1 = v1 = ẋ, w2 = v2 = ẏ, w3 = v5 = ωz,

w4 = φ1 = v1 − rv4, w5 = φ2 = v2 + rv3.
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Taking both the constraints and their time derivatives equal to zero, we obtain

GL = 1

2
[(ẇ1)2 + (ẇ2)2] +

k2

2

[(−ẇ2

r

)2

+

(
ẇ1

r

)2

+ (ẇ3)2

]
,

and solving the Gibbs–Appell equations, we arrive to

ẇ1 = ẇ2 = ẇ3 = 0,

i.e. the solution of this system with non-holonomic constraints is given by

X = w1X ′
1 + w2X ′

2 + w3X ′
3,

that is,

X(a) =
(

a, ẋf1(q) + ẏf2(q) + ωzf3(q), ẋ
∂

∂x

∣∣∣∣
a

+ ẏ
∂

∂y

∣∣∣∣
a

)
,

for all a ∈ Aq.

7. Conclusions

Throughout this paper we put in evidence the importance of the Lie algebroid formalism as a
geometrical tool to deal with some problems in classical mechanics, mainly when we use quasi-
coordinates instead of the usual coordinates. In fact, Lie algebroid theory provides a suitable
geometric framework for dealing with quasi-coordinates. The meaning of Hamel symbols,
for example, becomes clear from this new perspective. We believe that the geometrical
description we have presented here, simplifies the computation of the equations and the
solution of different problems using quasi-coordinates on a tangent bundle, particularly in the
presence of non-holonomic constraints.

It has also been shown that the Lie algebroid formalism can be used to study systems
with linear non-holonomic constraints as in the case of systems in classical mechanics on
a tangent bundle. Again, the role of ‘quasi-coordinates’ is essential to solve these systems.
The Gibbs–Appell generalized method is a useful tool to determine the equations of motion
of a system with constraints. In most cases, this method is more efficient to solve systems
with linear non-holonomic constraints than the Lagrange multipliers (generalized) method or
even the computation of the generalized Euler–Lagrange equations, as was shown in several
examples developed along the paper.

Acknowledgments

The authors acknowledge the referees for their comments. Financial support from
CMUC/FCT, POCI/MAT/58452/2004, DGA-GRUPOS CONSOLIDADOS E24/1 and
BFM-2003-02532 projects is acknowledged.

References
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